
software modularity group

a fundamental breakthrough in how we
think about and work in software

development
--

the ‘multiple view thing’ is about to
take off in a big way

Gregor Kiczales
University of British Columbia

PARC

12/14/01 NCO SDP meeting 2 UBC software modularity group

a fundamental breakthrough is possible

• a diversity of models is
a key enabler for all engineering fields
– hierarchical models
– and crosscutting models

• new result crosscutting programs
– today

• can have significant impact on industrial SDP
– tomorrow

• can marry the best of
– language/programming based approaches (scruffies)
– formal/model-based approaches (neats)

• key support for “science of engineering of software”

12/14/01 NCO SDP meeting 3 UBC software modularity group

models – hierarchical and crosscutting

• dynamic model crosscuts static models
• intuitively crosscutting means:

something spread-out in one view
is local in the other, and vice versa

simple
statics

more
detailed
statics

simple
dynamicsartifact

12/14/01 NCO SDP meeting 4 UBC software modularity group

programs – hierarchical or level of detail

Point

getX(): int
getY(): int
setX(int)
setY(int)

Line

getX(): int
getY(): int
setX(int)
setY(int)

Figure *

2

FigureElement
class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {
this.p2 = p2;

}
}

class Point {
private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) {
this.x = x;

}
void setY(int y) {
this.y = y;

}
}

move tracking

12/14/01 NCO SDP meeting 5 UBC software modularity group

crosscutting programs

Point

getX(): int
getY(): int
setX(int)
setY(int)

Line

getX(): int
getY(): int
setX(int)
setY(int)

Figure *

2

MoveTracking

FigureElement

MoveTracking

aspect DisplayUpdating {
pointcut move():

call(void Line.setP1(Point)) ||
call(void Line.setP2(Point)) ||
call(void Point.setX(int)) ||
call(void Point.setY(int));

after() returning: move() {
Display.update();

}
}

class Line {
private Point p1, p2;

Point getP1() { return p1; }
Point getP2() { return p2; }

void setP1(Point p1) {
this.p1 = p1;

}
void setP2(Point p2) {

this.p2 = p2;
}

}

class Point {

private int x = 0, y = 0;

int getX() { return x; }
int getY() { return y; }

void setX(int x) {
this.x = x;

}
void setY(int y) {

this.y = y;
}

}

an aspect is a modular
unit of crosscutting

code (and design)

12/14/01 NCO SDP meeting 6 UBC software modularity group

impact and agenda

• 0-3 years
– early adopter Java programmers

• improved productivity, configurability, adaptability…
• using aspect-oriented programming

– AspectJ, Hyper/J, Demeter…
• using aspect-oriented software development

– connections to UML, IDEs

– research work
• security, robustness, distribution…
• language design and implementation
• tools support, methods, processes, refactoring

– beginning to see transition to industry
• but must maintain research

12/14/01 NCO SDP meeting 7 UBC software modularity group

impact and agenda

• 3-10 years
– ability to have crosscutting programs enables

• design rationale capture to align with code
• models to align with code

– ‘rountrip’ between model and code level
– eliminate win-lose formal/programming struggle

• technological basis for ‘engineering of software’
– we can support multiple

– wonderful work to do
• are now seeing burst of proposals for different views
• develop a science of this

– what will our time–frequency domain transform be?
• build a new community structure

